Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
نویسندگان
چکیده
Understanding the function of important DNA elements in mammalian stem cell genomes would be enhanced by the availability of deletion collections in which segmental haploidies are precisely characterized. Using a modified Cre-loxP-based system, we now report the creation and characterization of a collection of ∼1,300 independent embryonic stem cell (ESC) clones enriched for nested chromosomal deletions. Mapping experiments indicate that this collection spans over 25% of the mouse genome with good representative coverage of protein-coding genes, regulatory RNAs, and other non-coding sequences. This collection of clones was screened for in vitro defects in differentiation of ESC into embryoid bodies (EB). Several putative novel haploinsufficient regions, critical for EB development, were identified. Functional characterization of one of these regions, through BAC complementation, identified the ribosomal gene Rps14 as a novel haploinsufficient determinant of embryoid body formation. This new library of chromosomal deletions in ESC (DelES: http://bioinfo.iric.ca/deles) will serve as a unique resource for elucidation of novel protein-coding and non-coding regulators of ESC activity.
منابع مشابه
I-38: Chromosome Instability in The Cleavage Stage Embryo
Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...
متن کاملSimultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell
Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...
متن کاملGenome Editing Using Mammalian Haploid Cells
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For exampl...
متن کاملNeural Stem Cells in Drosophila: Molecular Genetic Mechanisms Underlying Normal Neural Proliferation and Abnormal Brain Tumor Formation
Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisio...
متن کاملIdentification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome
Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...
متن کامل